Telegram Group & Telegram Channel
Почему трансформеры справляются с большими объемами данных лучше, чем рекуррентные нейронные сети

Это связано с их возможностями параллельной обработки, лучшим моделированием дальнодействующих зависимостей и устойчивостью к исчезающим и взрывающимся градиентам.

Дополнительно, слой нормализации в трансформерах помогает справляться с проблемой взрыва градиента, что делает их еще более надежными для работы с крупными наборами данных.

Библиотека собеса по Data Science



tg-me.com/ds_interview_lib/876
Create:
Last Update:

Почему трансформеры справляются с большими объемами данных лучше, чем рекуррентные нейронные сети

Это связано с их возможностями параллельной обработки, лучшим моделированием дальнодействующих зависимостей и устойчивостью к исчезающим и взрывающимся градиентам.

Дополнительно, слой нормализации в трансформерах помогает справляться с проблемой взрыва градиента, что делает их еще более надежными для работы с крупными наборами данных.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/876

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

Библиотека собеса по Data Science | вопросы с собеседований from in


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA